YAMAZAKI, Wataru

Position: Professor

MAIL: yamazaki [at] cseas.kyoto-u.ac.jp

Research Departments

Environmental Coexistence

Area

Food hygiene, zoonotic disease, animal infectious disease

Research Interests

1. Development of new detection techniques for pathogens, and dissemination domestically and overseas
2. International networking in the field of food hygiene and infectious disease control



【Global spread of various pathogens associated with globalization】
The progress of globalization has advantages such as promotion of political integration and improvement of productivity by international division of economic activity. There are also negative aspects such as global environmental issues, terrorism and the spread of infectious diseases and food-borne pathogens worldwide. As one example, with the increase in transboundary migration of humans, animals and goods (including food) in the world, the global spread of animal infectious diseases is increasing (transboundary animal infectious disease, TAD). When TADs such as African swine fever (ASF) and foot-and-mouth disease occur in an eradicated country, its economic loss is huge. It is speculated that ASF has invaded Georgia from Eastern Africa in 2007, due to illegal dumping of food waste left by cargo ships. After that, the spread of ASF continued in Russia and Eastern Europe, and then, ASF invaded China, North Korea and Southeast Asia from 2018, and it has become a pandemic now. As ASF invades China, which accounts for half of the world’s pig breeding population, there is a concern that it will have a serious socioeconomic impact on the world’s pig farming industry. The global economic loss caused by the ASF pandemic, which has been in existence for over 10 years, is estimated to be more than $ 150 billion (about 16 trillion yen) (Estimated damage amount only for Africa, Eastern Europe and Russia). Contributions to early detection and early containment of TADs are required at the global level.

【New technology development and international networking】
If you experience fieldwork and technical support in various parts of the world, thanks to the constant efforts of our predecessors, we can feel that the local researchers have an image of a sophisticated science and technology holding country with respect to the current Japan. Since they have a sense of trust and affirmation on our developed technology, we can proceed international collaboration smoothly. On the other hand, Japan has once suffered from epidemic of waterborne and zoonotic diseases such as cholera and rabies that are still important issues in many areas of the world. Although such these epidemic are one of the inevitable problems as a negative aspect of globalization, the development and spread of new technologies and international networking have been the keys to solve these tasks in the past and today. By developing new versatile and reliable testing methods that meet international standards and contributing the spread of the method both domestically and overseas, rational administrative policies aimed at controlling various infectious diseases and ensuring food safety can be strengthened. By conducting such transdisciplinary collaboration with overseas researchers, we can achieve a catch-up style social development based on the introduction of advanced technologies from overseas, which is also a journey that Japan has continued since the Meiji era. We would like to contribute to the solution of tasks in the fields of food hygiene and infectious disease control all over the world (Photos show fieldwork landscape in Tanzania).

    Peer-reviewed publications:

  • 1. Yashiki, N., Yamazaki, Y., Subangkit, M., Okabayashi, T., Yamazaki, W., Goto, Y. Development of a LAMP assay for rapid and sensitive detection and differentiation of Mycobacterium avium subsp. avium and subsp. hominissuis Letters Appl. Microbiol. (In press).
  • 2. Nagao, K., Makino, R., Apego, F. V., Mekata, H., Yamazaki, W. 2019. Development of a fluorescent loop-mediated isothermal amplification assay for rapid and simple diagnosis of bovine leukemia virus infection. J. Vet. Med. Sci. 81, 787-792.
  • 3. Sabike, I. I., Yamazaki, W. 2019. Improving detection accuracy and time for Campylobacter jejuni and Campylobacter coli in naturally infected live and slaughtered chicken broilers using real-time fluorescent LAMP approach. J. Food Protect. 82, 189-193.
  • 4. Liu, Y. H., Yamazaki, W., Huang, Y. T., Liao, C. H., Sheng, W. H., Hsueh, P. R. 2019. Clinical and microbiological characteristics of patients with bacteremia caused by Campylobacter species with an emphasis on the subspecies of C. fetus. J. Microbiol. Immunol. Infect. 52, 122-131.
  • 5. Yamazaki, W., Makino, R., Nagao, K., Mekata, H., Tsukamoto, K. 2019. New micro-amount of virion enrichment technique (MiVET) to detect influenza A virus in the duck feces. Transbound. Emerg. Dis. 66, 341-348.
  • 6. Yamamoto, T., Manabe, H., Yamazaki, W., Misawa, N., Takahashi, M., Okada, K. 2018. Combination effect of allyl isothiocyanate and hoof trimming on bovine digital dermatitis. J. Vet. Med. Sci. 80, 1080-1085.
  • 7. Mai, T.N., Nguyen, V.D., Yamazaki, W., Okabayashi,T., Mitoma,S.,Notsu, K., Sakai, Y., Yamaguchi, R., Norimine,J., Sekiguchi,S. 2018. Development of pooled testing system for porcine epidemic diarrhoea using real-time fluorescent reverse-transcription loop-mediated isothermal amplification assay. BMC Vet Res. Vol.14, 172.
  • 8. Howson, E.L.A., Armson, B.N., Lyons, A., Chepkwony, E., Kasanga, C.J., Kandusi, S., Ndusilo, N., Yamazaki, W., Gizaw, D., Cleaveland, S., Lembo, T., Rauh, R., Nelson, W.M., Wood, B.A., Mioulet, V., King, D.P., Fowler, V. L. 2018. Direct detection and characterisation of foot-and-mouth disease virus in east Africa using a field-ready real-time PCR platform. Transbound. Emerg. Dis., 65, 221-231.
  • 9. Sabike, I. I., Uemura, R., Kirino, Y., Mekata, H., Sekiguchi, S., Farid, A. S., Goto, Y., Horii, Y., Yamazaki, W. 2017. Assessment of the Campylobacter jejuni and C. coli in broiler chicken ceca by conventional culture and loop-mediated isothermal amplification method. Food Control, 74, 107-111.
  • 10. Anklam, K., Kulow, M., Yamazaki, W., Dopfer, D. 2017. Development of real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the differential detection of digital dermatitis associated treponemes. PLOS One, 12, e0178349. E1-E13.
  • 11. Iraola, G., Forster, S.C., Kumar, N., Lehours, P., García-Peña, F.J., Paolicchi, F., Morsella, C., Hotzel, H., Hung, L.Y., Hsueh, P.R., Vidal, A., Lévesque, S., Bekal, S., Yamazaki, W., Balzan, C., Vargas, A., Piccirillo, A., Chaban, B., Hill, J.E., Betancor, L., Collado, L., Truyers, I., Midwinter, A.C., Dagi, H.T., Calleros, L., Pérez, R., Naya, H., Lawley, T.D. 2017. Distinct Campylobacter fetus lineages adapted as livestock pathogens and intestinal pathoboints in the human microbiota. Nature Communications 8, 1367. E1-E8.
  • 12. Yamazaki, W., Sabike, I. I., Sekiguchi, S. 2017. High prevalence of Campylobacter in broiler flocks is a crucial factor for frequency of food poisoning in humans. Jpn. J. Infect. Dis. 70, 691-692.
  • 13. Feng, K., Li, W., Guo, Z., Duo, H., Fu, Y., Shen, X., Tie, C., E, R., Xiao, C., Luo, Y., Qi, G., Ni, M., Ma, Q., Yamazaki, W., Yoshida, A., Horii, Y., Yagi, K., Nonaka, N. 2017. Development of LAMP assays for the molecular detection of taeniid infection in canine in Tibetan rural area. J. Vet. Med. Sci. 79, 1986-1993.
  • 14. Taniguchi, T., Yamazaki, W., Saeki, Y., Takajo, I., Okayama, A., Hayashi, T., Misawa, N. 2016. The pathogenic potential of Helicobacter cinaedi isolated from non-human sources: adherence, invasion and translocation ability in polarized intestinal epithelial Caco-2 cells in vitro. J. Vet. Med. Sci. 78, 627-632.
  • 15. Yamazaki, W., Uemura, R., Sekiguchi, S., Dong, J.B., Watanabe, S., Kirino, Y., Mekata, H., Nonaka, N., Norimine, J., Sueyoshi, M., Goto, Y., Horii, Y., Kurogi, M., Yoshino, S., Misawa, N. 2016. Campylobacter and Salmonella are prevalent in broiler farms in Kyushu, Japan: Results of a 2-year distribution and circulation dynamics audit. J. Appl. Microbiol. 20, 1711-1722.
  • 16. Higa, Y., Uemura, R., Yamazaki, W., Goto, S., Goto, Y., Sueyoshi, M. 2016. An improved loop-mediated isothermal amplification assay for the detection of Mycoplasma bovis. J. Vet. Med. Sci. 78, 1343-1346.
  • 17. Sabike, I. I., Uemura, R., Kirino, Y., Mekata, H., Sekiguchi, S., Okabayashi, T., Goto, Y., Yamazaki, W. 2016. Use of direct LAMP screening of broiler fecal samples for Campylobacter jejuni and Campylobacter coli in the positive flock identification strategy. Frontiers in Microbiol. 7, 1582, E1-E5.
  • 18. Iizumi, T., Taniguchi, T., Yamazaki, W., Vilmen, G., Alekseyenko, A., Gao, Z., Perez-Perez, G., Blaser, M. J. 2016. Effect of antibiotic pre-treatment and pathogen challenge on the intestinal microbiota in mice. Gut Pathogens, 8, 60, E1-E10.
  • 19. Pham, N.T., Trinh, Q.D., Khamrin, P., Ukarapol, N., Kongsricharoern, T., Yamazaki, W., Komine-Aizawa, S., Okitsu, S., Maneekarn, N., Hayakawa, S., Ushijima, H. 2015. Application of the LAMP method for the detection of Campylobacter jejuni and C. coli from Thai children with diarrhea. Jpn. J. Infect. Dis., 68: 432-433.
  • 20. Escalante-Maldonado, O. R., Kayali, A. Y., Yamazaki, W., Vuddhakul, V., Nakaguchi, Y., Nishibuchi, M. 2015. Improvement of the quantitation method for the tdh+ Vibrio parahaemolyticus in molluscan shellfish based on most-probable-number, immunomagnetic separation, and loop-mediated isothermal amplification. Frontiers in Microbiol. 6 (article: 270): 1-10.
  • 21. Tanaka, N., Iwade, Y., Yamazaki, W., Gondaira, F., Vuddhakul, V., Nakaguchi, Y., Nishibuchi, M. 2014. Most-probable-number loop-mediated isothermal amplification-based procedure enhanced with K antigen-specific immunomagnetic separation for quantifying tdh (+) Vibrio parahaemolyticus in molluscan shellfish. J. Food Prot. 77: 1078-1085.
  • 22. Ushijima, H., Nishimura, S., Thongprachum, A., Shimizu-Onda, Y., Tran, D. N., Pham, N. T., Takanashi, S., Dey, S. K., Okitsu, S., Yamazaki, W., Mizuguchi, M., Hayakawa, S. 2014 Sensitive and rapid detection of Campylobacter species from stools of children with diarrhea in Japan by the loop-mediated isothermal amplification method. Japanese Journal of Infectious Diseases. 67: 374-378.
  • 23. Kasanga, C. J., Yamazaki, W., Mioulet, V., King, D.P., Mulumba, M., Ranga, E., Deve, J., Mundia, C., Chikungwa, P., Joao, L., Wambura, P. N., Rweyemamu, M. M. 2014. Rapid, sensitive and effective diagnostic tools for foot-and-mouth disease virus in Africa. Onderstepoort Journal of Veterinary Research. 81: E1-E5.
  • 24. Yamazaki, Y., Oba, E., Kashiwagi, N., Sugita, K., Shiiba, K., Baba, Y., Shimoji, Y., Yamazaki, W. 2014. Development of a loop-mediated isothermal amplification assay for rapid and simple detection of Erysipelothrix rhusiopathiae. Letters Appl. Microbiol. 58: 362-369.
  • 25. Yamazaki, W., Mioulet, V., Murray, L., Madi, M., Haga, T., Misawa, N., Horii, Y., King, D. P. 2013.Development and evaluation of multiplex RT-LAMP assays for rapid and sensitive detection of foot-and-mouth disease virus. J Virol Meth 192: 18-24.
  • 26. Yamazaki, W., Kumeda, Y., Uemura, R., Misawa, N. 2011. E Evaluation of a loop-mediated isothermal amplification assay for rapid and simple detection of Vibrio parahaemolyticus in naturally contaminated seafood samples. Food Microbiol 28: 1238-1241.
  • 27. Yamazaki, W., Taguchi, M., Misawa, N. 2010. Development of a loop-mediated isothermal amplification and PCR assays for rapid and simple identification of Campylobacter fetus subsp. venerealis. Microbiol Immunol 54: 398-404.
  • 28. Moe, K. K., Yano, T., Misumi, K., Kubota, C., Nibe, K., Yamazaki, W., Muguruma, M., Misawa, N. 2010. Detection of antibodies against Fusobacterium necrophorum and Porphyromonas levii-like species in dairy cattle with papillomatous digital dermatitis. Microbiol Immunol 54: 338-346.
  • 29. Moe, K. K., Mimura, J., Ohnishi, T., Wake, T., Yamazaki, W., Nakai, M., Misawa, N. 2010. The mode of biofilm formation on smooth surfaces by Campylobacter jejuni. J Vet Med Sci. 72: 411-416.
  • 30. Moe, K. K., Yano, T., Misumi, K., Kubota, C., Yamazaki, W., Muguruma, M., Misawa, N. 2010. Analysis of the IgG immune response to Treponema phagedenis-like spirochetes in individual dairy cattle with papillomatous digital dermatitis. Clin Vaccine Immunol 17:376-383.
  • 31. Yamazaki, W., Kumeda, Y., Misawa, N., Nakaguchi, Y., Nishibuchi, M. 2010. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of the tdh and trh genes of Vibrio parahaemolyticus and related Vibrio species. Appl Environ Microbiol 76:820-828.
  • 32. Yamazaki, W., Taguchi, M., Kawai, T., Kawatsu, K., Sakata, J., Inoue, K., Misawa, N. 2009. Comparison of loop-mediated isothermal amplification assay and conventional culture methods for detection of Campylobacter jejuni and Campylobacter coli in naturally contaminated chicken meat samples. Appl Environ Microbiol 75:1597-1603.
  • 33. Yamazaki, W., Taguchi, M., Ishibashi, M., Nukina, M., Misawa, N., Inoue, K. 2009. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Campylobacter fetus. Vet Microbiol 136:393-396.
  • 34. Kanki, M., Sakata, J., Taguchi, M., Kumeda, Y., Ishibashi, M., Kawai, T., Kawatsu, K., Yamasaki, W., Inoue, K., Miyahara, M. 2009. Effect of sample preparation and bacterial concentration on Salmonella enterica detection in poultry meat using culture methods and PCR assaying of preenrichment broth. Food Microbiol 26:1-3.
  • 35. Yamazaki, W., Taguchi, M., Ishibashi, M., Kitazato, M., Nukina, M., Misawa, N., Inoue, K. 2008. Development and evaluation of a loop-mediated isothermal amplification assay for rapid and simple detection of Campylobacter jejuni and Campylobactyer coli. J Med Microbiol 57:444-451.
  • 36. Yamazaki, W., Seto, K., Taguchi, M., Ishibashi, M., Inoue, K. 2008. Sensitive and rapid detection of cholera toxin-producing Vibrio cholerae using a loop-mediated isothermal amplification. BMC Microbiol 8:94 (E1-E7).
  • 37. Yamazaki, W., Ishibashi, M., Kawahara, R., Inoue, K. 2008. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMC Microbiol 8:163 (E1-E7).
  • 38. Kawatsu, K., Kumeda, Y., Taguchi, M., Yamazaki-Matsune,W., Kanki, M., Inoue, K. 2008. Development and evaluation of immunochromatographic assay for simple and rapid detection of Campylobacter jejuni and Campylobacter coli in human stool specimen. J Clin Microbiol 46:1226-1231.
  • 39. Yamazaki-Matsune, W., Taguchi, M., Seto, K., Kawahara, R., Kawatsu, K., Kumeda, Y., Kitazato, M., Nukina, M., Misawa, N., Tsukamoto, T. 2007. Development of a multiplex PCR assay for identification of Campylobacter coli, Campylobacter fetus, Campylobacter hyointestinalis subsp. hyointestinalis, Campylobacter jejuni, Campylobacter lari and Campylobacter upsaliensis. J Med Microbiol 56:1467-1473.
  • 40. Taguchi, T., Seto, K., Yamazaki, W., Tsukamoto, T., Izumiya, H., Watanabe, H. 2006. CMY-2 β-lactamase-producing Salmonella enterica serovar Infantis isolated from poultry in Japan. Jpn J Infect Dis 59:144-146.
  • 41. Matsune, W., Ishikawa, K., Hayashi, K., Tsuji, M., Izumiya, H., Watanabe, H. 2001. Molecular analysis of Salmonella Enteritidis isolates resistance to ampicillin and streptomycin from three outbreaks of food poisoning in Shiga prefecture. Jpn. J. Infect. Dis. Vol.54: 111-113.

 

    Book chapters: peer reviewed:

  • 1. Ecology, virulence and detection of pathogenic and pandemic Vibrio parahaemolyticus. (ed.) Raghunath, P., Karunasagar, I., Karunasagar, I. 2016. Frontiers Media SA, USA. pp.71-80. Escalante-Maldonado, O. R., Kayali, A. Y., Yamazaki, W., Vuddhakul, V., Nakaguchi, Y., Nishibuchi, M.
  • 2. PCR detection of microbial pathogens. (ed.) Wilk, M. 2013. Humana Press Inc. (Springer), Totowa, NJ, USA. pp. 267-277. Yamazaki, W.
  • 3. Microbial toxins Methods and protocols. (ed.) Holst, O. 2011. Humana Press Inc. (Springer), Totowa, NJ, USA. pp. 13-22. Yamazaki, W.

    研究代表者分:

  • 1. 日本学術振興会(JSPS)二国間交流事業共同研究「アフリカ豚コレラ制圧のための新技術開発と性能評価」(2019-2020年度)
  • 2. 国立研究開発法人科学技術振興機構(JST)・A-STEP機能検証フェーズ「アフリカ豚コレラ・鳥インフルエンザウイルスの超高感度な自動濃縮検出システム開発」(2018-2019年度)
  • 3. 文部科学省・科学研究費助成事業(科研費)・基盤研究(C)「カンピロバクターの環境動態解明とシームレスな食中毒制御スキームの開発」(2018-2020年度)
  • 4. 国立研究開発法人科学技術振興機構(JST)・地域産学バリュープログラム「越境性動物ウイルスの超高感度濃縮検出システム開発のための産学共同研究」(2017-2018年度)
  • 5. 宮崎市・地域貢献学術研究助成「高病原性を含む鳥インフルエンザウイルス等の超高感度濃縮検出システムの開発と環境調査への応用」(2017年度)
  • 6. 国立研究開発法人農研機構(NARO)・革新的技術開発緊急展開事業「口蹄疫・アフリカ豚コレラウイルスの超高感度な即時検出技術確立とフィージビリティスタディ」(2016年度)
  • 7. 公益財団法人伊藤記念財団・研究助成「カンピロバクターフリーブロイラーの分別出荷を目的とした養鶏場即時検出システムの確立」(2016年度)
  • 8. 宮崎市・地域貢献学術研究助成「高病原性鳥インフルエンザ早期封じ込めのための高感度野外即時診断法の確立と環境調査への応用」(2016年度)
  • 9. 国立研究開発法人科学技術振興機構(JST)・マッチングプランナー・プログラム「越境性動物感染症(口蹄疫・アフリカ豚コレラ)の農場即時診断を目指した産学共同研究-侵入時の早期摘発・封じ込め体制確立」(2015-2016年度)
  • 10. 宮崎市・地域貢献学術研究助成「宮崎市産鶏肉付加価値向上を目的とした鶏用善玉細菌製剤と高病原性鳥インフルエンザ早期封じ込めのための迅速遺伝子診断法の開発」(2015年度)
  • 11. 文部科学省・科学研究費助成事業(科研費)・基盤研究(C)「牛趾皮膚炎病態解明・制圧のための細菌学的・疫学的研究」(2014-2017年度)

 

    研究分担者分: :

  • 1. 日本学術振興会(JSPS)・研究拠点形成事業B アジア・アフリカ型学術基盤形成事業「ハブ拠点との連携による東南アジア地域の畜産の生産性向上と産業動物防疫体制の強化」(2017-2019年度)
  • 2. 農林水産省・レギュラトリーサイエンス新技術開発事業「畜産農場における飲用水の効果的な食中毒菌除去方法の確立」(2013-2015年度)
  • 3. 厚生労働省・科学研究費補助金「アジアのコレラ・腸管感染症の現状掌握と問題解決のための研究:国際共同研究との連携を介した日-アジアネットワーキング形成を目指して」(2012年度)
  • 4. 厚生労働省・科学研究費補助金「変容するアジアにおける細菌性下痢症を阻止するためのフロントライン研究」(2011年度)
  • 5. 日本学術振興会(JSPS)・最先端研究開発戦略的強化費補助金「頭脳循環を活性化する若手研究者海外派遣プログラム」(2010-2012年度)